Abstract

The main aim of this work was to assess the potential of in situ carbonation as a treatment to modify the properties of alkaline materials such as industrial soil in terms of leaching behaviour and mineralogy and to store the CO2 generated by specific treatments applied in the context of Brownfield regeneration. The process was investigated through lab-scale column carbonation experiments, in which 100% CO2 was fed through humidified stainless steel slag under ambient temperature and pressure for set reaction times. The reaction kinetics and the maximum CO2 uptake attained (5.5%), corresponding to a Ca conversion yield of 15.6%, after 4h treatment proved slightly lower than those resulting from batch tests carried out on the same particle size fraction at enhanced operating conditions. The mineralogy of the material showed to be affected by column carbonation, exhibiting a higher calcite content and the decrease of Ca hydroxide and silicate phases. As a result of carbonation, the material showed a decrease in pH and Ca release as well as an increase in Si mobility. Furthermore, a reduction of Cr and Ba leaching, up to 63% and 96% respectively, was achieved after 2h of reaction. However, carbonation was observed to lead to an increased leaching of V and Mo. The effects of carbonation on the leaching behaviour of the material were also investigated performing pH-dependence leaching tests and the results indicated that in situ carbonation appears to be a promising treatment to improve the properties of alkaline materials in view of their reuse on-site.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call