Abstract

The oxygen fugacity of the upper mantle is 3–4 orders of magnitude higher than that of the lower mantle and this has been attributed to Fe2+ disproportionating into Fe3+ plus Fe0 at pressures >24GPa. The upper mantle might therefore have been expected to have evolved to more oxidizing compositions through geological time, but it appears that the oxygen fugacity of the upper mantle has remained constant for the last 3.5billionyears. Thus, it indicates that the mantle has been actively buffered from the accumulation of Fe3+, and that this is linked to oxidation of diamond to carbonate coupled with reduction of Fe3+ to Fe2+. When subducted plates penetrate into the lower mantle, compensational upwelling transports bridgmanite into the transition zone, where it breaks down to ringwoodite and majorite, releasing the ferric iron. The system returns to equilibrium through oxidation of diamond. Early in Earth history, diamond may have been enriched at the base of the transition zone in the Magma Ocean, because it is denser than peridotite melts at depths shallower than 660km, and it is more buoyant below. Ongoing oxidation of diamond forms carbonate, leading to relatively high carbonate concentrations in the source of ocean island basalts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.