Abstract
Data of AT (total alkalinity) and CT (total inorganic carbon) collected during October 2013, on a N-S transect crossing the North of Lemnos basin allowed to identify the peculiarities of the CO2 system in the North Aegean Sea and estimate the anthropogenic CO2 (CANT) concentrations.Extremely high concentrations of AT and CT were recorded in the upper layer of the North Aegean reflecting the high loads of AT and CT by the brackish BSW (Black Sea Water) outflowing through the Dardanelles strait and by the rivers runoff. Both AT and CT exhibit strong negative linear correlation with salinity in the upper layer (0–20m). Investigation of the AT-S relationship along with the salinity adjustment of AT revealed excess alkalinity throughout the water column in relation to the surface waters implying a possible occurrence of non-carbonate alkalinity inputs as well as of other processes that take place probably over the extended shelves and contribute to the alkalinity surplus.The intermediate layer occupied by the Modified Levantine Intermediate Water (MLIW) mass exhibits the lowest CT and AT concentrations, while rather elevated AT and CT concentrations characterize the North Aegean Deep Water (NAgDW) mass filling the deep layer of the North of Lemnos basin linked to previous dense water formation episodes.High anthropogenic CO2 content was detected at intermediate and deep layers of the North Aegean reflecting the effective transportation of the absorbed atmospheric CO2 from the surface to the deeper waters via the dense water formation episodes. The MLIW layer is more affected by the penetration of CANT than the NAgDW that fills the deep part of the basin. The observed variability of CANT distribution reflects the influence of the intensity of dense water formation events, of the different θ/S properties of the newly formed dense waters as well as of the diverse submarine pathways followed by the cascading dense waters. The invasion of CANT has lead to more acidic conditions and to lower saturation degree of calcium carbonate in relation to the preindustrial era. The findings of this study provide baseline information about the carbonate system properties of the North Aegean and highlight its active role in sequestering and storing anthropogenic CO2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.