Abstract
AbstractFracture evaluation and vuggy feature understanding are of prime importance in carbonate reservoirs. Commonly the related features are extracted from high resolution borehole images in water-based mud environments. To reduce the formation damage from drilling fluids, many wells are drilled with oil-based muds (OBM) in carbonate reservoirs. There are no appropriate measurements to resolve the reservoir characterization in OBM with the existing technologies in horizontal wells—especially in real-time—to make decisions at an early stage.In this paper, we would like to introduce a workflow for geological characterization using a new dual-images logging while drilling tool in oil-based mud. This new tool provides high resolution resistivity and ultrasonic images at the same time. Structural features, such as bedding boundaries, faults, fractures can be identified efficiently from resistivity images; while detailed sedimentary features, for example, cross beddings, vugs, stylolite are easily characterized using ultrasonic images. Benefiting from the dual images, an innovative workflow was proposed to estimate the vug feature more accurately; and the fractures can be identified from images and classified based on tool measurement principles.One case study from the Middle East demonstrated the benefits of this new measurement. A near well structure model was constructed from bed boundaries picked from borehole images. The fractures were picked and classified confidently using the dual images. Additionally, fracture density statistics are available along the well trajectory. The vug features were extracted efficiently, which indicates the secondary porosity development information. Rock typing is achieved by combining fracture and vug analysis to provide zonation for completion and production stimulation.The dual-images provide the capability for geological characterization in carbonate reservoir in an oil-based mud environment. The image-based rock typing helps segment the drain-hole for completion and production stimulation. The reservoir mapping with rock typing provides detailed information for in-filling well design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.