Abstract
Carbonate rocks have a wide variety of pore shapes and different types of grains, which greatly affect the elastic properties and characteristics of the reservoir. This causes certain difficulties in petroelastic modeling. One of the problems is the scale of the input data, which is then used to build the rock physics model. The paper presents the results of studying three core samples of carbonate rocks of the Upper Devonian and Lower Carboniferous age, which are located in the South Tatar arch (Volga-Ural oil and gas basin (Russia)). To evaluate the structural characteristics of the pore space, the effective medium theory is used. The input data are the results of laboratory studies that include measurements of the velocities of longitudinal and transverse waves, porosity, and thin section and computed tomography analysis. When using the computed tomography, the core samples are analyzed at different resolution (12–37 µm/voxel). The tomography studies of pore space at different scales provide rather different values of porosity and pore aspect ratio. The tomography-based porosity estimations also differ from the experimentally measured porosity (up to 10%). The pore space characteristics provided by different datasets are used to build a rock physics model for the studied rocks that helps to estimate the elastic wave velocities with three different methods of effective medium theory (self-consistent approximation, differential effective medium (DEM), and the Kuster–Toksöz method). A comparison of the velocity estimations with their experimental analogs for dry rocks may indicate the presence of microcracks whose size is beyond the tomography resolution. Improved rock physics models incorporating both pores and microcracks are then used to predict the elastic wave velocities of fluid-saturated rock in a wide porosity range. It is demonstrated that the predicted values significantly differ (up to 30%) from those provided by the rock physics (RP) models constructed without the support of the tomography results. Moreover, other types of models are considered in which the difference in experimental and theoretical velocities is attributed to changes in the host matrix properties as compared to the calcite polycrystal, which are caused by various reasons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.