Abstract
Increasing CO2 emission has resulted in pressing climate and environmental issues. While abiotic and biotic processes mediating the fate of CO2 have been studied separately, their interactions and combined effects have been poorly understood. To explore this knowledge gap, an iron-reducing organism, Orenia metallireducens, was cultured under 18 conditions that systematically varied in headspace CO2 concentrations, ferric oxide loading, and dolomite (CaMg(CO3)2) availability. The results showed that abiotic and biotic processes interactively mediate CO2 acidification and sequestration through "chain reactions", with pH being the dominant variable. Specifically, dolomite alleviated CO2 stress on microbial activity, possibly via pH control that transforms the inhibitory CO2 to the more benign bicarbonate species. The microbial iron reduction further impacted pH via the competition between proton (H+) consumption during iron reduction and H+ generation from oxidization of the organic substrate. Under Fe(III)-rich conditions, microbial iron reduction increased pH, driving dissolved CO2 to form bicarbonate. Spectroscopic and microscopic analyses showed enhanced formation of siderite (FeCO3) under elevated CO2, supporting its incorporation into solids. The results of these CO2-microbe-mineral experiments provide insights into the synergistic abiotic and biotic processes that alleviate CO2 acidification and favor its sequestration, which can be instructive for practical applications (e.g., acidification remediation, CO2 sequestration, and modeling of carbon flux).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.