Abstract

Late Aptian–early Albian limestones from the eastern Brazilian continental margin record the early evolution of the South Atlantic Ocean. In Tethyan and North Atlantic domains, a planktic foraminiferal turnover and organic-rich deposits related to Oceanic Anoxic Event 1b (OAE 1b) point to major ocean-climate changes through this interval. Coeval organic-rich deposits of the South Atlantic Ocean have been interpreted as the product of restricted circulation rather than attributed to a global event. However, previous investigations of the early marine phase of South Atlantic lack data from more distal facies, making correlations to global events difficult. Here, we present C, O, and Sr isotopes, elemental geochemistry, TOC and pyrolysis data, as well as a microfacies analysis of an upper Aptian–lower Albian distal section from the Campos Basin (southeastern Brazil). Our focus is on the paleoenvironmental characterization of and the possible association between organic-rich deposits and major perturbations related to Aptian–Albian transition. Five microfacies associations (MA) were identified in the informal units I and III, which were deposited in the neritic region on a carbonate ramp. Organic-rich deposits were described in unit III, composed of planktic-dominated wackestones interbedded with black shales, in a distal dysoxic to anoxic environment. The carbonates 87Sr/86Sr ratios showed a drastic increase (0.7072–0.7074), interpreted as enhanced chemical weathering, supported by the increase of continental input to the top of section. This trend was accompanied by a long-term δ13Ccarb negative excursion, which were assigned to the latest late Aptian–early Albian interval of the isotope reference curves, in accordance with the described occurrence of Colomiella recta. This scenario matches those proposed for the late Aptian–early Albian transition and OAE 1b set, as an enhanced greenhouse stage, pointing to the influence of the referred ocean-climate changes on the deposition of organic-rich deposits of the early South Atlantic Ocean. This investigation gives more evidences that these perturbations were a widespread event, as a product of broad-scale disturbances in the global carbon cycle which also controlled organic deposition and preservation on restricted settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call