Abstract

The coastal sabkhas of the United Arab Emirates provide a Holocene analog for the study of evaporite formation. Carbonate-evaporite sequences are common throughout geologic history and, in the Arabian Gulf region in particular, create the reservoir-seal relationship of some of the most prolific hydrocarbon reservoirs in the world. Detailed core description, thin section study and geochemical analysis of Miocene to Holocene cores from the sabkha of Abu Dhabi have been performed in order to characterize modern sabkha diagenetic patterns. Two primary lithologies, dolomite and anhydrite were identified and subdivided into lithofacies. Based on these lithofacies, deposition is interpreted to have occurred in shallow open marine, lagoonal, tidal channel, tidal/algal flats and supratidal sabkha settings. The primary diagenetic effects are dolomitization, anhydritc formation and leaching. As anhydrite precipitated (in the form of gypsum), the Mg:Ca ratio increased to the point where rapid dolomitization of original limestone occurred. Leaching was pervasive, as subaerial exposure led to the formation of moldic porosity in dolomitized packstones and grainstones. Dolomitic cements in these pores, and leached zones in some of these crystals suggests that leaching continued after dolomitization. By comparing the Holocene sabkha sediments to ancient ones, insight may be gained into the extent ofmore » dolomilization both with depth and distance for in the high water mark, the zonation of the stratigraphy from upper supratidal to shallow shelf, the preservation potential of algal mats after burial, the compaction effects after shallow burial, and other diagenetic alterations.« less

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call