Abstract

We present a numerical model to quantify calcite dissolution in the guts of deposit feeding invertebrates. Deposit feeder guts were modeled as constantly stirred reactors (CSTRs) following terminology from digestion theory. Saturation state and dissolution of calcium carbonate were calculated from changes in total dissolved carbon dioxide and alkalinity resulting from sediment passage through the digestive tract, while accounting for dissolution of calcite and respiration of organic carbon. Typical dissolution rates for a gut volume of 1 ml ranged between 0.5–4 mg calcite d −1. Sensitivity analysis revealed gut pH, sediment organic matter (OM) content and OM reactivity to be the critical parameters determining calcite dissolution rate. Carbonate dissolution rate was inversely related to gut pH. However, calcite dissolution was found to be possible even at alkaline gut pH due to respiration by intestinal microbes. The kinetics of calcite dissolution had only marginal influence on daily calcite dissolution rates: Varying the calcite dissolution rate constant κ by six orders of magnitude affected calcite dissolution rates by less than a factor of 10. Calcite dissolution rates were calculated for 4 different hydrographic regimes that differed in their content of sedimentary calcite and OM and furthermore in their OM reactivity. Highest dissolution rates were calculated for the shallow water setting, where relatively high OM content facilitated high microbial respiration rates depressing gut pH. However, dissolution rates for the deep sea setting were only slightly lower, due to greatly elevated ingestion rates resulting from low OM content. As a consequence of much higher faunal abundances, shallow-water benthos is likely to contribute the vast majority of gut-mediated carbonate dissolution. Nevertheless, the fraction of sedimentary calcite that dissolves during one gut passage is probably too small to be observable by simple gravimetric analysis. This may explain the notable scarcity of evidence for gut-mediated carbonate dissolution in the literature to date. Assuming depth-dependent calcite dissolution rates and deposit feeder abundances, we estimate gut-mediated carbonate dissolution to contribute approximately 5% of the annual global sedimentary carbonate dissolution rate, which corresponds to an average calcite dissolution rate of approximately 0.5 mg m −2 d −1 for the entire ocean floor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.