Abstract
Disentangling the temperature and depth of formation of fault rocks is critical for understanding their rheology, exhumation, and the evolution of fault zones. Estimation of fault rock temperatures mostly relies on conventional geothermometers of metamorphic minerals and element partitioning analysis, which are largely inapplicable in shallow crustal fault rocks. Here, we demonstrate the applicability of the carbonate clumped isotope thermometer in low-grade carbonate-bearing fault rocks from the Himalayan frontal wedge (northwest India). Coalescing carbonate clumped isotope thermometry and calcite e-twin morphology allows us to constrain the temperature and depth of formation of the two main thrusts of the Himalayan frontal wedge, the Nahan thrust (170 ± 10 °C; 6–7 km depth), and the Main Boundary thrust (262 ± 30 °C; 10–11 km depth). The integration of the adopted analytical techniques can promote the application of calcite-based clumped isotope thermometry to the fault zone processes and refinement of shallow crustal fault zone models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.