Abstract

Abstract. Deep-sea corals are a potentially valuable archive of the temperature and ocean chemistry of intermediate and deep waters. Living in near-constant temperature, salinity, and pH and having amongst the slowest calcification rates observed in carbonate-precipitating biological organisms, deep-sea corals can provide valuable constraints on processes driving mineral equilibrium and disequilibrium isotope signatures. Here we report new data to further develop “clumped” isotopes as a paleothermometer in deep-sea corals as well as to investigate mineral-specific, taxon-specific, and growth-rate-related effects. Carbonate clumped isotope thermometry is based on measurements of the abundance of the doubly substituted isotopologue 13C18O16O2 in carbonate minerals, analyzed in CO2 gas liberated on phosphoric acid digestion of carbonates and reported as Δ47 values. We analyzed Δ47 in live-collected aragonitic scleractinian (Enallopsammia sp.) and high-Mg calcitic gorgonian (Isididae and Coralliidae) deep-sea corals and compared results to published data for other aragonitic scleractinian taxa. Measured Δ47 values were compared to in situ temperatures, and the relationship between Δ47 and temperature was determined for each group to investigate taxon-specific effects. We find that aragonitic scleractinian deep-sea corals exhibit higher values than high-Mg calcitic gorgonian corals and the two groups of coral produce statistically different relationships between Δ47–temperature calibrations. These data are significant in the interpretation of all carbonate clumped isotope calibration data as they show that distinct Δ47–temperature calibrations can be observed in different materials recovered from the same environment and analyzed using the same instrumentation, phosphoric acid composition, digestion temperature and technique, CO2 gas purification apparatus, and data handling. There are three possible explanations for the origin of these different calibrations. The offset between the corals of different mineralogy is in the same direction as published theoretical predictions for the offset between calcite and aragonite although the magnitude of the offset is different. One possibility is that the deep-sea coral results reflect high-Mg and aragonite crystals attaining nominal mineral equilibrium clumped isotope signatures due to conditions of extremely slow growth. In that case, a possible explanation for the attainment of disequilibrium bulk isotope signatures and equilibrium clumped isotope signatures by deep-sea corals is that extraordinarily slow growth rates can promote the occurrence of isotopic reordering in the interfacial region of growing crystals. We also cannot rule out a component of a biological “vital effect” influencing clumped isotope signatures in one or both orders of coral. Based on published experimental data and theoretical calculations, these biological vital effects could arise from kinetic isotope effects due to the source of carbon used for calcification, temperature- and pH-dependent rates of CO2 hydration and/or hydroxylation, calcifying fluid pH, the activity of carbonic anhydrase, the residence time of dissolved inorganic carbon in the calcifying fluid, and calcification rate. A third possible explanation is the occurrence of variable acid digestion fractionation factors. Although a recent study has suggested that dolomite, calcite, and aragonite may have similar clumped isotope acid digestion fractionation factors, the influence of acid digestion kinetics on Δ47 is a subject that warrants further investigation.

Highlights

  • IntroductionOne possibility is that the deep-sea coral results reflect highMg and aragonite crystals attaining nominal mineral equilibrium clumped isotope signatures due to conditions of extremely slow growth

  • Based on published experimental data and theoretical calculations, these biological vital effects could arise from kinetic isotope effects due to the source of carbon used for calcification, temperature- and pH-dependent rates of CO2 hydration and/or hydroxylation, calcifying fluid pH, the activity of carbonic anhydrase, the residence time of dissolved inorganic carbon in the calcifying fluid, and calcification rate

  • The determination of 13C–18O bonds in carbonate minerals is accomplished by measurement of mass 47 CO2 liberated by phosphoric acid digestion (Ghosh et al, 2006). 13C–18O bonding is reported as a per mil enrichment from that which would be expected in the liberated CO2 if the sample had a stochastic distribution of C and O isotopes among all isotopologues and is designated by the parameter 47

Read more

Summary

Introduction

One possibility is that the deep-sea coral results reflect highMg and aragonite crystals attaining nominal mineral equilibrium clumped isotope signatures due to conditions of extremely slow growth. Instead of relying on an isotopic exchange reaction between different phases (e.g., CaCO3 and H2O), clumped isotope thermometry relies on internal isotopic exchange between isotopes in a single phase (Schauble et al, 2006) This means that, in theory, all that is needed to determine mineral formation temperatures is the clumped isotope composition of the solid and not the water from which it grew (Schauble et al, 2006; Eiler, 2007). Proxy material calibrations far have included aragonitic scleractinian zooxanthellate corals (Ghosh et al, 2006; Saenger et al, 2012; Tripati et al, 2015), aragonitic scleractinian non-zooxanthellate deep-sea corals (Ghosh et al, 2006; Thiagarajan et al, 2011), aragonitic otoliths (Ghosh et al, 2007), calcitic and aragonitic foraminifera (Tripati et al, 2010), mollusks and brachiopods (Came et al, 2007, 2014; Eagle et al, 2013; Henkes et al, 2013) and land snails (Zaarur et al, 2011; Eagle et al, 2013), calcitic speleothems (Affek et al, 2008; Daëron et al, 2011), bioapatite (Eagle et al, 2010), and calcitic microbialites (Petryshyn et al, 2015)

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call