Abstract

Mineralogical, textural and chemical analyses of clay-rich materials following firing, evidence that initial mineralogical differences between two raw materials (one with carbonates and the other without) influence the tex- tural and mineralogical evolution of the ceramics as T increases from 700 to 1100° C. Mineralogical and textural changes are interpreted considering local marked disequilibria in a system that resembles a small-scale high- T meta- morphic process ( e.g., contact aureoles in pyrometamorphism). In such conditions, rapid heating induces significant overstepping in mineral reaction, preventing stable phase formation and favoring metastable ones. High- T transfor- mations in non-carbonate materials include microcline structure collapse and/or partial transformation into sanidine; and mullite plus sanidine formation at the expenses of muscovite and/or illite at T ‡ 800° C. Mullite forms by mus- covite-out topotactic replacement, following the orientation of mica crystals: i.e., former (001) muscovite are ^ to (001)mullite. This reaction is favored by minimization of free energy during phase transition. Partial melting followed by fingered structure development at the carbonate-silicate reaction interface enhanced high- T Ca (and Mg) silicates formation in carbonate-rich materials. Gehlenite, wollastonite, diopside, and anorthite form at carbonate-silicate interfaces by combined mass transport (viscous flow) and reaction-diffusion processes. These results may add to a better understanding of the complex high- T transformations of silicate phases in both natural ( e.g., pyrometamor- phism) and artificial ( e.g., ceramic processing) systems. This information is important to elucidate technological achievements and raw material sources of ancient civilizations and, it can also be used to select appropriate clay com- position and firing temperatures for new bricks used in cultural heritage conservation interventions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.