Abstract

Summary We present the first quantitative study and complete model of the wormholing phenomenon, leading to a means of predicting and optimizing carbonate acidizing treatments. Laboratory experiments on a gypsum model system and computer simulations show that for a given geometry, wormholes can be quantified by a unique parameter, their equivalent hydraulic length. The behavior of this quantifying parameter vs. all the system parameters is studied and allows the quantitative prediction of the efficiency of an acidizing treatment. This study highlights the fractal nature of the phenomenon, which is accounted for in the equations, and the strong effect of the sample geometry. Three types of etching can be obtained: compact, wormhole type, or homogeneous. The optimum conditions for achieving die best skin decrease correspond to the creation of wormholes and can then be defined in terms of fluid reactivity and injection rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.