Abstract
Surface oxygen vacancy (OV) plays a pivotal role in the activation of molecular oxygen and separation of electrons and holes in photocatalysis. Herein, carbonaceous materials-modified MoO2 nanospheres with abundant surface OVs (MoO2/C-OV) were successfully synthesized via glucose hydrothermal processes. In situ introduction of carbonaceous materials triggered a reconstruction of the MoO2 surface, which introduced abundant surface OVs on the MoO2/C composites. The surface oxygen vacancies on the obtained MoO2/C-OV were confirmed via electron spin resonance spectroscopy (ESR) and X-ray photoelectron spectroscopy (XPS). The surface OVs and carbonaceous materials boosted the activation of molecular oxygen to singlet oxygen (1O2) and superoxide anion radical (•O2-) in selectively photocatalytic oxidation of benzylamine to imine. The conversion of benzylamine was 10 times that of pristine MoO2 nanospheres with a high selectivity under visible light irradiation at 1 atm air pressure. These results open an avenue to modify Mo-based materials for visible light-driven photocatalysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.