Abstract
Disinfection byproduct (DBP) precursors in wastewater during the reversed anaerobic–anoxic–oxic (A2/O) process, as well as their molecular weight (MW) and polarity-based fractions, were characterized with UV scanning, fluorescence excitation emission matrix, Fourier transform infrared and nuclear magnetic resonance spectroscopy. Their DBP formation potentials (DBPFPs) after chlorination were further tested. Results indicated that the reversed A2/O process could not only effectively remove the dissolved organic carbon (DOC) and dissolved total nitrogen in the wastewater, but also affect the MW distribution and hydrophilic–hydrophobic properties of dissolved organic matter (DOM). The accumulation of low MW and hydrophobic (HPO) DOM was possibly due to the formation of soluble microbial product-like (SMP-like) matters in the reversed A2/O treatment, especially in the anoxic and aerobic processes. Moreover, DOM in the wastewater displayed a high carbonaceous disinfection byproduct formation potential (C-DBPFP) in the fractions of MW>100kDa and MW<5kDa, and revealed an increasing tendency of nitrogenous disinfection byproduct formation potential (N-DBPFP) with decrease of MW. For polarity-based fractions, the HPO fraction of wastewater showed significantly higher C-DBPFP and N-DBPFP than hydrophilic and transphilic fractions. Therefore, although the reversed A2/O process could remove most DBP precursors by DOC reduction, it led to the enhancement of DBPFP with the formation and accumulation of low MW and HPO DOM. In addition, strong correlations between C-DBPFPs and SUVA, and between N-DBPFPs and DON/DOC, were observed in the wastewater, which might be helpful for DBPFP prediction in wastewater and reclaimed water chlorination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.