Abstract

The effects of different process temperatures (40, 55, and 67 degrees C) during composting of source-separated household waste were studied in a 200 L compost reactor at an oxygen concentration of 16%. The overall decomposition measured as carbon mineralization, decomposition of different carbon constituents, and the dynamics of nitrogen mineralization and the microbial community, are reported. Ammonia emissions at 67 degrees C were more than double those at lower temperatures, and they were lowest at 40 degrees C. The decomposition rate, measured as CO2 emission, was highest at 55 degrees C. Decomposition of crude fat was slower at 40 degrees C than at 55 and 67 degrees C. The peak in microbial biomass was largest in the run at 40 degrees C, where substantial differences were seen in the microbial community structure and succession compared to thermophilic temperatures. Biowaste composting can be optimized to obtain both a high decomposition rate and low ammonia emissions by controlling the process at about 55 degrees C in the initial, high-rate stage. To reduce ammonia emissions it seems worthwhile to reduce the temperature after an initial high-temperature stage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.