Abstract

This study explores strategies to develop highly efficient direct carbon fuel cells (DCFCs) by combining a solid-oxide fuel cell (SOFC) with a catalyst-aided carbon-gasification process. This system employs Cu/CeO2 composites as both anodic electrodes and carbon additives in a cell of the type: carbon|Cu-CeO2/YSZ/Ag|air. The study investigates the impact on in situ carbon-gasification and DCFC performance characteristics of catalyst addition and variation in the carrier gas used (inert He versus reactive CO2). The results indicate that cell performance is significantly improved by infusing the catalyst into the carbon feedstock and by employing CO2 as the carrier gas. At 800 °C, the maximum power output is enhanced by approximately 40% and 230% for carbon/CO2 and carbon/catalyst/CO2 systems, respectively, compared with that of the carbon/He configuration. The increase observed when employing the catalyst and CO2 as the carrier gas can be primarily attributed to the pronounced effect of the catalyst on carbon-gasification through the reverse-Boudouard reaction, and the subsequent in situ electro-oxidation of CO at the anode three-phase boundary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.