Abstract

Carbon to chlorophyll-a ratio (CCHL) is formulated based on the assumption that adaptive changes in carbon to chlorophyll occur so as to maximize the specific growth rate for ambient conditions, including solar radiation and water temperature. With the dynamic CCHL, an unsteady two-layered, two-dimensional eutrophication numerical model for density stratified coastal waters has been developed. Saturated light intensity (IS) is determined as weighted average of the light intensity for previous three days to incorporate light acclimation by phytoplankton. The bottom water anoxic condition during summer in Tolo Harbour, Hong Kong is successfully reproduced by the present method. Otherwise, the simulation with a constant CCHL gave a wrong result.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.