Abstract

A reaction pathway is proposed to explain the formation of end products during defined chemical reactions between carbon tetrachloride (CCl4) and either metal complexes of pyridine-2,6-bis(thiocarboxylic acid) (PDTC) or pure cultures of Pseudomonas stutzeri KC. The pathway includes one-electron reduction of CCl4 by the Cu(II):PDTC complex, condensation of trichloromethyl and thiyl radicals, and hydrolysis of a labile thioester intermediate. Products detected were carbon dioxide, chloride, carbonyl sulfide, carbon disulfide, and dipicolinic acid. Spin-trapping and electrospray MS/MS experiments gave evidence of trichloromethyl and thiyl radicals generated by reaction of CCl4 with PDTC and copper. Experiments testing the effects of transition metals showed that dechlorination by PDTC requires copper and is inhibited by cobalt but not by iron or nickel. PDTC was shown to react stoichiometrically rather than catalytically without added reducing equivalents. With added reductants, an increased turnover was seen along with increased chloroform production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.