Abstract

Liquid phase levulinic acid hydrogenation into γ-valerolactone in 1,4-dioxane as a solvent (165°C, 20 bar) was studied over a range of Ru monometallic catalysts using mesoporous carbon material Sibunit as a support. In addition to the catalyst prepared by impregnation with RuCl3∙nH2O (0.1 M) followed by reduction in H2, size-controlled Ru(NPs)/Sibunit catalysts were synthesized by immobilization of polyvinylpyrrolidone (PVP) stabilized Ru nanoparticles (NPs) (dRu=2.4 nm). Сarbon supported colloidal Ru NPs were not studied earlier in levulinic acid hydrogenation. Activity of colloidal Ru(NPs)/Sibunit catalysts was found to be lower than that of impregnated Ru/Sibunit which could be attributed to hampering effect of PVP. However, colloidal Ru(NPs)/Sibunit purified by thermal treatment in air (180°C) followed by reduction in H2 (400°C) exhibited the same activity as impregnated one yielding 93% γ-valerolactone at 100% levulinic acid conversion. Applicability of supported PVP-assisted colloidal Ru NPs in hydrogenation of levulinic acid illustrates a potential to prepare more efficient catalysts for this reaction with a desired particle size. The catalysts were characterized by TEM, XRF, and N2 physisorption to compare their physical chemical properties

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call