Abstract
To address the fossil energy crisis and environmental problems, the urgent demand for clean energy has promoted the rapid development of advanced rechargeable metal-air batteries based on the redox reaction couples of gases, such as the oxygen reduction, oxygen evolution, carbon dioxide reduction and carbon dioxide evolution reactions. High-efficiency electrocatalysts are highly desirable to enhance the conversion efficiency of these reactions for enhancing battery performance. Significant advances in single-atom catalysts (SACs) on carbon matrices have been witnessed in recent years as attractive and unique systems to improve the electrocatalytic activities for high-performance rechargeable Zn- and Li-air batteries. This review summarizes the latest achievements in the applications of carbon-supported SACs in metal-air batteries, with a particular focus on the rational design of SACs and their fundamental electrocatalytic mechanism at the atomic level. The future development and perspectives of SACs in the field of metal-air batteries are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.