Abstract

Transition metal oxides (MO) have been widely investigated as promising anode materials for lithium-ion batteries, but suffer from the problems of irreversible capacity loss and poor cycling stability resulting from intrinsic poor conductivity, large volume expansion/contraction during the discharge/charge processes. Despite two main types of effective efforts, i.e., preparing pre-designed nano/microstructures and hybridization with either active or conductive nanomaterials, these approaches have hitherto had difficulties in seeking deliberate nano/microstructural designs and guaranteeing homogeneous interface/chemical distributions of active MO material within the non-active matrix at the nanoscale. Herein, we report a preparation of carbon-supported Ni core @ NiO shell/Al2O3 (C-Ni@NiO/Al2O3) integrated nanocomposite derived from NiAl-layered double hydroxide (NiAl-LDH) single-resource precursor. The combined features of the C-Ni@NiO/Al2O3 nanocomposite involve the uniform dispersion of nanosized Ni@NiO, the conductive carbon support and Ni core, as well as the buffer role of the newly generated non-active Al2O3. Electrochemical evaluation shows that the C-Ni@NiO/Al2O3 nanocomposite maintains much enhanced electrochemical performances and good cycling stability in comparison with the pristine NiO. Results of TEM visualizations and electrochemical impedance spectra provide experimentally convincing rationales of the information of Al2O3 buffer and improved the conductivity underlying the enhanced performances. The route could extend to design and prepare various nanostructured metal oxides with uniform-dispersion components based on the versatility in varying the metal cations of LDH precursors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call