Abstract

Ordered mesoporous carbon (OMC)-supported molybdenum carbide catalysts were successfully prepared in one pot using a solvent-evaporation-induced self-assembly strategy accompanied by a carbothermal hydrogen reduction reaction. Characterization with nitrogen sorption, small-angle XRD, and TEM confirmed that the obtained materials had high surface areas, large pore volumes, ordered mesoporous structures, narrow pore size distributions, and uniform dispersions of molybdenum carbide particles. With nitrogen replaced by hydrogen in the carbothermal reduction reaction, the formation temperature of molybdenum carbide could be reduced by more than 100 °C. By changing the amount of molybdenum precursor added from less than 2 % to more than 5 %, molybdenum carbide structures could be easily regulated from Mo(2) C to MoC. The catalytic performance of OMC-supported molybdenum carbide catalysts was evaluated by hydrodeoxygenation of vegetable oils. Compared with Mo(2)C, MoC exhibited high product selectivity and excellent resistance to leaching in the conversion of vegetable oils into diesel-like hydrocarbons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call