Abstract
Fusarium proliferatum is a worldwide fungal pathogen that produces fumonisins which are harmful to animal and human health. However, environmental factors affecting fumonisin biosynthesis in F. proliferatum are not well understood. Based on our preliminary results, in this study, we investigated the effect of sucrose or mannose as the sole carbon source on fumonisin B (FB) production by F. proliferatum and studied their underlying mechanisms via proteome and gene expression analysis. Our results showed that mannose, used as the sole carbon source, significantly blocked fumonisin B1 and B2 production by F. proliferatum as compared with the use of sucrose. Fifty-seven differentially expressed proteins were successfully identified. The downregulated proteins in the mannose-cultured strain were mainly involved in carbon metabolism, response to stress, and methionine metabolism, as compared with the sucrose-cultured strain. Moreover, quantitative real-time PCR analysis indicated that expression of several key genes involved in FB biosynthetic pathway and in transcription regulation were significantly downregulated in the mannose-cultured F. proliferatum, whereas expression of histone deacetylation-related genes were significantly upregulated. These results suggested that the blockage of FB biosynthesis by mannose was associated with the decreases in conversion of acetyl-CoA to polyketide, methionine biosynthesis, and NADPH regeneration. More importantly, milder oxidative stress, downregulated expression of genes involved in biosynthetic pathway and transcription regulation, and upregulated expression of genes with histone deacetylation possibly were responsible for the blockage of FB biosynthesis in F. proliferatum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.