Abstract
The Snf1p/AMP-activated kinases are involved in transcriptional, metabolic, and developmental regulation in response to stress. In Saccharomyces cerevisiae, Snf1p (Cat1p) is one of the key regulators of carbohydrate metabolism, and cat1 (snf1) mutants fail to grow with non-fermentable carbon sources. In Candida albicans, Snf1p is an essential protein and cells depend on a functional Snf1 kinase even with glucose as carbon source. We investigated the CaSnf1p complex after tandem affinity purification and mass spectrometric analysis and show that the complex composition changes with the carbon source provided. Three subunits were identified, one of which was named CaSnf4p because of its homology to the ScSnf4 protein and the respective CaSNF4 gene could complement a S. cerevisiae snf4 mutant. The other two proteins revealed similarities to the S. cerevisiae kinase beta subunits ScGal83p, ScSip2p, and ScSip1p. Both genes complemented the scaffold function in a S. cerevisiae gal83,sip1,sip2 triple deletion mutant and were named according to their scaffold function as CaKIS1p and CaKIS2p. Matrix-assisted laser desorption ionization peptide mass fingerprint analysis indicated that CaKis2p is N-terminal myristoylated and the incorporation of CaKis2p in the Snf1p complex was reduced when compared with cells grown with glucose as a carbon source. To verify the different complex assemblies, a stable isotope labeling technique (iTraqtrade mark) was employed, confirming a 3-fold decrease of CaKis2p with ethanol. Yeast two-hybrid analysis confirmed the interaction partners, and these results showed an activator domain for the CaKis2 protein that has not been reported for S. cerevisiae scaffold subunits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.