Abstract

A series of silica gels (Si-40, Si-60, Si-100) and related carbon–silica gels, prepared by carbonization of CH2Cl2 at a surface of silica gels at 550 °C, characterized using FTIR/PAS, SEM/EDX, and nitrogen adsorption, was investigated upon interactions with polar (water, dimethylsulfoxide), weakly polar (chloroform), and nonpolar (n-hexane, n-decane, benzene, toluene) adsorbates using adsorption and differential scanning calorimetry methods. Features of confined space effects, such as freezing/melting point depression and melting delay, depend strongly on pore sizes, pore wall structure, type and amount of adsorbates, and the degree of pore filling. Melting curves of both polar and nonpolar adsorbates bound in broad pores (Si-60 and Si-100 based materials) can include two–three peaks around melting point, but for Si-40-based materials, a number of similar peaks is smaller. This occurs due to step-by-step melting of frozen structures located in broader pores and the absence of similar effects in narrower pores. The present study shows that complex carbon–silica gel adsorbents can be more effective adsorbents than simple silica gels due to the presence of a number of surface sites of various polarity and structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.