Abstract
Plants are key components of the terrestrial ecosystem carbon cycle. Atmospheric CO2 is assimilated through photosynthesis and stored in plant biomass and in the soil. The use of turfgrass is expanding due to the increasing human population and urbanization. In this review, we summarize recent carbon sequestration research in turfgrass and compare turfgrass systems to other plant systems. The soil organic carbon (SOC) stored in turfgrass systems is comparable to that in other natural and agricultural systems. Turfgrass systems are generally carbon-neutral or carbon sinks, with the exception of intensively managed areas, such as golf course greens and athletic fields. Turfgrass used in other areas, such as golf course fairways and roughs, parks, and home lawns, has the potential to contribute to carbon sequestration if proper management practices are implemented. High management inputs can increase the biomass productivity of turfgrass but do not guarantee higher SOC compared to low management inputs. Additionally, choosing the appropriate turfgrass species that are well adapted to the local climate and tolerant to stresses can maximize CO2 assimilation and biomass productivity, although other factors, such as soil respiration, can considerably affect SOC. Future research is needed to document the complete carbon footprint, as well as to identify best management practices and appropriate turfgrass species to enhance carbon sequestration in turfgrass systems.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.