Abstract

The cool temperate climate, dominance of perennial land use, and relatively large proportion of peat and organically rich soils, make the northern European regions to have a large potential of soil organic carbon (SOC) sequestration. However, with predicted global warming soils in these areas may become sources of atmospheric CO2. Quantitative and reliable assessment methods and understanding of the spatial variability of SOC pools are required to make accurate mean estimate of available C and integrate variability into predictive models of SOC reserves and sequestration potential. Advanced analytical methods such as near-infrared spectroscopy and carbon isotope techniques can be used to estimate retention time and C turnover rates in soils. The rehabilitation of peat lands has shown a potential for SOC sequestration ranging from 25 to 45 gCm−2 yr−1 in Scandinavian countries. The potential of SOC sequestration in agricultural and forestry ecosystems depends on the land use and management practice adopted. Furthermore, the proven land management practices (e.g. conservation tillage, reduced soil erosion, restoring wetlands and degraded lands) coupled with improved cultivation practices (e.g. judicious fertilizer use, crop rotations and cover crops) can make the soil of this region as C sink.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call