Abstract

The determination of polycyclic aromatic hydrocarbons (PAHs) in water at low levels is a current challenge given their great impact on the health and safety of the public. Here, a novel pyrene-based self-assembled monolayer (SAM) platform is exploited as an electrochemical sensing recognition device. Interestingly, the formation of π-π sandwich complexes between PAHs and the recognition element switches the surface electron transfer capability. The unique supramolecular interaction between identical aromatic molecules provides a highly sensitive and selective sensor for pyrene in the order of part per trillion. Accordingly, and using pyrene as a proof-of-concept, this work presents the basis for an "at-point-of-use" impedimetric sensor focused on a highly sensitive carbon-rich SAM for PAHs determination in water at ultra-trace levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call