Abstract

The interactions among different components of detrital food webs are likely to influence carbon processing and linkages between C and nutrient cycling. Our objective was to identify potentially important interactions in detrital food webs at the Hubbard Brook Experimental Forest, NH, USA, by exploring relationships among C resources, microbial biomass, microarthropod abundance and nitrogen availability as they vary across the landscape. We found significant spatial variation in microarthropod abundance in the forest floor across elevation zones in two watersheds, with consistently higher abundance in low-elevation hardwoods and upper conifer zones and lower abundance in mid- and high-elevation hardwoods. The same pattern was observed in the Oe horizon for microbial biomass C and respiration but not for N transformations; however, no patterns were observed in the Oa horizon. Microarthropod abundance and microbial biomass C were significantly positively correlated, but neither were related to forest floor mass or to annual aboveground fine litterfall flux. Instead, a positive correlation with fine root biomass suggests that C supply from roots plays a key role in the fungal channel of the detrital food web of these forests. The lack of relationship between patterns of microarthropod abundance and net N mineralization leads us to hypothesize that spatial patterns of nitrogen availability are not closely linked to variation in carbon flow through the detrital food web, within this forested landscape. In contrast, microarthropod abundance and net N mineralization did exhibit similar interannual variation and may respond to the same temporal controls.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.