Abstract

To make the best and highest use of solar light is the main direction and object of photocatalysis and water-splitting. Although UV and visible active photocatalysts have been extensively investigated, the use of near-infrared (NIR) wave band of solar light remains a nearly blank area. Here we report the UV–visible–NIR broad spectrum active photocatalytic property of CQDs/hydrogenated TiO2 (H-TiO2) nanobelt heterostructures. The improved UV and visible photocatalytic property can be attributed to improved optical absorption, charge carrier trapping, and hindering of the photogenerated electron–hole recombination of oxygen vacancies and Ti3+ ions in TiO2 nanobelts created by hydrogenation. The NIR photocatalytic activity is from photo-induced electron transfer, electron reservoir, and up-converted PL properties of CQDs, which can absorb NIR light and convert into visible light and transfer to visible photocatalytic active H-TiO2 nanobelts. This work offers a simple strategy for the fabrication of a wide spectrum of active heterostructured photocatalysts by assembling CQDs on the surface of UV–visible photocatalysts, which opens a door for photodegradation, photocatalytic water splitting, and enhanced solar cells using sunlight as light source.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call