Abstract

We investigated the mechanisms that determine the quality and quantity of organic carbon (C) stocks in boreal forest soils by analyzing both qualitative and quantitative changes in the organic fractions in the soil organic matter (OM) in a vertical gradient in the decomposition continuum of the organic horizon [litter layer (L), fermentation layer (F), and humus layer (H)] in forest soils using a sequential fractionation method at two forest types along a climatic gradient in Finland. We predicted that the concentrations of water-soluble (WSE) and non-polar (NPE) extractives should decrease and those of the acid-soluble (AS) fraction and acid-insoluble residue (AIR) should increase from the L to the F, and from the F to the H layers, but the C/N ratio of soil OM should stay constant after reaching the critical quotient. We also predicted that the AIR concentrations should be higher in the south than north boreal, and in sub-xeric than mesic forests. Consistent with our hypothesis, the concentrations of WSE and NPE fractions decreased and concentrations of AIR increased in the vertical soil gradient. The highest concentrations of the AS fraction were found in the F layer. The C/N ratio was lowest in the F layer, and the highest in the H layer, indicating that soil OM is depleted in N in relation to C along the vertical soil gradient. Concentrations of WSE and NPE were lower, and concentrations of AIR were higher in the south than in north boreal forests, which is in agreement with our hypothesis that higher soil temperatures may enhance accumulation of slowly decomposable OM in the soil. The concentrations of AIR were higher in the sub-xeric than mesic forests. Contrary to our expectations, however, the differences in the chemical quality in soil OM between the site types were amplified from the L to the H layer. The size of the C storage was significantly larger in south than north boreal sites, and larger in the mesic than in the sub-xeric sites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.