Abstract
The present work explores the use of carbon powder, recently proposed for producing plasmonic metal nanocomposites, as a means to obtain Eu3+ photoluminescence (PL) enhancements via Cu nanoclusters in glass. Phosphate glasses containing Eu2O3 and CuO were prepared by melting in ambient atmosphere with graphite powder added to the batch materials for the chemical reduction of copper(II). Optical absorption and PL spectroscopy characterizations, including emission decay dynamics, were performed. The data show consistently the effective reduction of Cu2+ ions via carbon during melting which ultimately leads to thermally induced copper particle precipitation. Further, the novel in situ concurrent PL and absorption microspectroscopy technique was employed for the real-time monitoring of the optical properties of the codoped glasses during thermal processing from 470 to 490 °C. Bidirectional energy transfer between europium ions and copper nanoclusters has been manifested through enhancement and quenching regim...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.