Abstract
AbstractTidewater glaciers are highly vulnerable to climate change due to warming from both atmospheric and seawater sources. Most tidewater glaciers are rapidly retreating, but little is known about how glacial melting modifies coastal biogeochemical cycles. Here, we investigate carbonate and nutrient dynamics and fluxes in an expanding proglacial tidal lagoon connected to Europe's largest glacier in Iceland (Vatnajökull). The lagoon N:P:Si ratios (2:1:30) imply a system deficient in nitrogen. The large variations in the freshwater endmembers highlighted the complexity of resolving sources and transformations. The lagoon acted as a sink of dissolved inorganic carbon (DIC). Floating chamber incubations revealed a CO2 uptake of 26 ± 15 mmol m−2 d−1. Lagoon waters near the glacier had a 170% higher CO2 uptake than near the lagoon mouth, likely driven by primary production stimulated by nitrogen‐rich bottom water upwelling. The lateral DIC and total alkalinity (TA) flux rates (outwelling) from the lagoon to the ocean were −1.5 ± 0.1 (export to ocean) and 23 ± 5 mmol m−2 d−1 (import into the lagoon) respectively. All samples were undersaturated with respect to aragonite due to glacial meltwater dilution of TA and CO2 uptake. This implies dilution of oceanic alkalinity, lowering the nearshore buffering capacity against ocean acidification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.