Abstract

Carbon financing policies such as emission trading have been used to assist in emission mitigation worldwide. As energy end-users/consumers are the underlying driver of emissions, it would be difficult to effectively mitigate carbon emissions by creating an emission trading market without active end-users’ involvement. In electricity markets, demand side management (DSM) in the smart grid can manage demands in response to power supply conditions and influence end-users to contribute to improving both network efficiency and economic efficiency. However, it is a relatively new topic to study the environmental benefits of DSM. This paper proposes a two-stage scheduling model to comprehensively investigate the environmental benefits of consumers participating in both electricity and carbon emission trading markets through active DSM. A developed zero sum gains-data envelopment analysis (ZSG-DEA) model based multi-criteria allocation scheme for emission allocation is employed. Meanwhile, the carbon emission flow model (CEF) is applied to track the “virtual” carbon flow accompanying power flow. According to case studies on the IEEE 24-bus system and IEEE 118-bus system, the proposed model can effectively achieve carbon emission mitigation and provide consumers extra environmental benefits in some scenarios. This model can be an important guide for governments to establish emission trading schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.