Abstract
A novel lightweight onion-like carbon (OLC)-based polymer composite with high electromagnetic (EM) shielding properties is presented. OLC have been produced via the large-scale production technology based on the annealing of detonation nanodiamond under vacuum conditions (or in inert atmosphere). EM shielding effectiveness has been tested in the frequency range of 26-37 GHz. The highest EM attenuation at 36.6 GHz reaching -34 dB was observed for polymethylmethacrylate films comprising 20 wt.% of OLC. The shielding effectiveness data collected for microwave frequencies were found to correlate well with the electrical resistivity measurements by four-probe method as well as conductivity measurements provided by the broadband dielectric spectroscopy (20 Hz-3 GHz). It was proved experimentally that OLC EM shielding capacity can be optimized by varying the nanoonion cluster size and nanodiamond annealing temperature so that effective EM coatings can be produced. Both the experimental observations and theoretical simulations demonstrate that even small (smaller than percolation threshold) additions of OLC particles to a polymer host can noticeably modify the composite response to EM radiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Electromagnetic Compatibility
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.