Abstract
In contrast to the recent immense attention in carbon nitride quantum dots (CNQDs) as a heteroatom-doped carbon quantum dot (CQD), their biomedical applications have not been thoroughly investigated. Targeted cancer therapy is a prominently researched area in the biomedical field. Here, the ability of CNQDs as a selective bioimaging nanomaterial was investigated to assist targeted cancer therapy. CNQDs were first synthesized using four different precursor sets involving urea derivatives, and the characteristics were compared to select the best candidate material for bioapplications. Characterization techniques such as UV-vis, luminescence, X-ray photoelectron spectroscopy, nuclear magnetic resonance spectroscopy, and transmission electron microscopy were used. These CNQDs were analyzed in in vitro studies of bioimaging and labeling using pediatric glioma cells (SJGBM2) for possible selective biolabeling and nanodistribution inside the cell membrane. The in vitro cellular studies were conducted under long-wavelength emission without the interference of blue autofluorescence. Thus, excitation-dependent emission of CNQDs was proved to be advantageous. Importantly, CNQDs selectively entered SJGBM2 tumor cells, while it did not disperse into normal human embryonic kidney cells (HEK293). The distribution studies in the cell cytoplasm indicated that CNQDs dispersed into lysosomes within approximately 6 h after the incubation. The CNQDs exhibited great potential as a possible nanomaterial in selective bioimaging and drug delivery for targeted cancer therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.