Abstract
Carbonaceous materials are practical anodes for lithium-ion batteries. Commercial graphite anode has a limited theoretical capacity of 372 mAh g−1. Amorphous carbon anode could break the capacity limitation of the graphite anode, while nitrogen doping plays a critical role in effectively enhancing the reversible capacities and rate capability of carbonaceous anodes. Herein, we propose a new strategy for synthesizing nitrogen-doped carbon materials from graphitic carbon nitride. Zinc-assisted thermal treatment of graphitic carbon nitride enables the carbonization of graphitic carbon nitride and successful preparation of highly nitrogen-doped carbon. The obtained nitrogen-doped carbon material is doped with a high-level nitrogen of 21.6 at. % which enables high reversible capacity and rate capability. This work puts forward a new synthesis protocol of nitrogen-doped carbon materials for promising anodes of lithium-ion batteries.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.