Abstract

Photocatalytic reduction of CO2 to hydrocarbons is considered to be a promising strategy to solve the energy crisis and environmental problems. Herein, the electronic and optical properties, and catalytic performance of g-C3N4 derivatives [C6N7(C6H4)1.5]n (systems 1 and 2), and [C6N7(C12H8)1.5]n (system 3) were studied by density functional theory (DFT) computations. Compared to g-C3N4 the band gaps of systems 1-3 are smaller, and the absorption intensities of the three derivatives in the visible light region increase, indicating that these derivatives can produce more electrons under visible light irradiation and enhance the photocatalytic performance. The computational results show that the main products of CO2 reduction catalyzed by system 1 are HCOOH and CH3OH. The rate-determining step is CO2→ COOH* with a ΔG of 1.22 eV. Therefore, system 1 is predicted to be a promising catalyst for the CO2 reduction reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.