Abstract

Deposition of Pt, Ru, Pt–Ru alloy, Ru@Pt, and Pt@Ru nanoparticles onto carbon nanotubes (CNTs) has been achieved by chemical reduction of the corresponding RuCl3·3H2O and/or H2PtCl6·6H2O by ethylene glycol in the presence of NaOH. The as-prepared catalysts were characterized by X-ray diffraction, H2-temperature programmed reduction, H2-temperature programmed desorption, X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy. Liquid-phase selective hydrogenation of phenylacetylene was used as a probe reaction to evaluate their catalytic performances. The as-prepared Pt, Ru, Pt–Ru alloy, Ru@Pt, and Pt@Ru nanoparticles fell in the range of 1.5–3.0 nm in diameter, and were uniformly dispersed on the CNTs. All the bimetallic catalysts displayed the characteristic diffraction peaks due to a Pt face-centered cubic structure, but the 2θ values were shifted to slightly higher ones, indicating the formation of alloy or core–shell structures. XPS analysis revealed that the catalysts contained mostly Pt(0) and Ru(0), with traces of Pt(II), Pt(IV), and Ru(IV). The Pt@Ru/CNTs and Ru@Pt/CNTs core–shell catalysts showed different catalytic properties in selective hydrogenation of phenylacetylene from the Pt–Ru alloy and the mixed monometallic samples with the correspondingly identical composition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call