Abstract

Alumina has been extensively used due to its high toughness and hardness, low bulk density, and thermal stability without interaction with the matrix at high temperature. However, the non-conductivity at room temperature narrows its broader applications. Carbon nanotube (CNT) is a suitable candidate to adjust the electrical property of alumina matrix composites due to its high electrical conductivity. By using material extrusion 3D printing (ME3DP), we fabricated 3D CNT/alumina green bodies using inks with controlled rheological properties for high printability. The printed green bodies with CNT loading from 3 wt% to 10 wt% were thermally treated to remove binders and sinter the 3D parts at temperatures from 900 to 1400 °C. The sintered samples showed a good dispersion of CNT in the alumina matrix and improved electrical conductivity. The electrical conductivity of the composites measured up to 10-1 S/m at 7 wt.% CNT loading, compared to the electrical conductivity of 10-13 S/m of pure alumina.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.