Abstract

A class of exactly solvable models describing carbon nanotubes in the presence of an external inhomogeneous magnetic field is considered. The framework of the continuum approximation is employed, where the motion of the charge carriers is governed by the Dirac–Weyl equation. The explicit solution of a particular example is provided. It is shown that these models possess nontrivial integrals of motion that establish N = 2 nonlinear supersymmetry in case of metallic and maximally semiconducting nanotubes. Remarkable stability of energy levels with respect to small fluctuations of longitudinal momentum is demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call