Abstract
AbstractTechnological advances in the field of microelectronic fabrication techniques have triggered a great interest in vacuum microelectronics. In contrast to solid‐state microelectronics, which entails scattering‐dominated electron transport in semiconducting solids, vacuum microelectronics relies on the scattering‐free, ballistic motion of electrons in vacuum. Since the first international conference on vacuum microelectronics substantial progress in this field has been made. The first technological devices using micrometer‐sized electron emitting structures are currently being commercialized. Field‐emission flat‐panel displays (FED) seem to be an especially promising competitor to LCD displays. Today there is only one mature technology for producing micro‐gated field‐emission arrays: the Spindt metal‐tip process. The drawbacks of this technology are expensive production, critical lifetime in vacuum, and high operating voltage. Carbon nanotubes (CNT) can be regarded as the potential second‐generation technology to the Spindt metal micro‐tip. In this review we show that the field emission (FE) behavior of CNT can be accurately described by Fowler–Nordheim tunneling and that the field‐enhancement factor β is the most prominent factor. Therefore the FE properties of a CNT thin film can be understood in terms of local field enhancement β(x,y), which can be determined with scanning anode field emission microscopy (SAFEM). To characterize the FE properties of an ensemble of electron emitters we used a statistical approach (as for thin film emitters), where f(β)dβ gives the number of emitters on a unit area with field‐enhancement factors within the interval [β,β + dβ]. We show that the field‐enhancement distribution function f(β) gives an almost complete characterization of the FE properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.