Abstract

Carbon nanotubes (CNTs) have appeared in recent years as innovative components for the development of the next-generation scaffolds to regenerate damaged cardiac tissue. The unique robustness, mechanical and electronic properties of CNTs, along with their ease to undergo chemical modification, make them promising candidates for the design of engineered cardiac constructs with ad hoc properties. The integration of CNTs with polymeric scaffolds is a promising strategy for cardiac regeneration since, as reviewed in these pages, their conductivity has a boosting effect on cardiomyocytes behavior, including their synchronous contractility when grown on top of the nanomaterial. More recently, the conductive properties of pure CNTs are attracting interest to design innovative systems based on bare CNTs without using other fillers. Additionally, the elongated CNT morphology is a strategic asset for the mimicry of the anisotropic myocardium structure, and research has made great progress over the production of micropatterned scaffolds with nanoscale definition that aim to recapitulate the cardiac tissue. Overall, engineered CNT constructs are revealing their great potential to develop new platforms able to interface, repair, or boost the performance of cardiac tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.