Abstract

Achieving efficient hydrogen evolution reaction (HER) catalysts to scale up electrochemical water splitting is desirable but remains a major challenge. Here, nitrogen-doped carbon nanotubes (NCNTs) loaded with PtNi/MoN electrocatalyst (PtNi/MoN@C) is synthesized by a simple strategy to obtain stronger interphase effects and significantly improve HER activity. The surface morphology of the materials is altered by Pt doping and the electronic structure of MoN is changed, which optimizing the electronic environment of the materials, shifting the binding energy and giving the materials a higher electrical conductivity, this ultimately leads to faster proton and electron transfer processes. The synergistic effect of Pt nanoparticles, MoN and the good combination with carbon leads to a high HER activity of 18 mV to reach 10 mA cm−2 in alkaline solution, outperforming that of the commercial Pt/C. Theoretical studies show that the heterostructures can efficiently enhance the electron transport and reduce the △GH*.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.