Abstract
Low-power, compact, and high-performance NP dynamic CMOS circuits are presented in this paper assuming a 16 nm carbon nanotube transistor technology. The performances of two-stage pipeline 32-bit carry lookahead adders are evaluated based on HSPICE simulation with the following four different implementations: silicon MOSFET (Si-MOSFET) domino logic, Si-MOSFET NP dynamic CMOS, carbon nanotube MOSFET (CN-MOSFET) domino logic, and CN-MOSFET NP dynamic CMOS. While providing similar propagation delay, the total area of CN-MOSFET NP dynamic CMOS adder is reduced by 35.53%, 77.96%, and 15.52% as compared to the Si-MOSFET domino, Si-MOSFET NP dynamic CMOS, and CN-MOSFET domino adders, respectively. Miniaturization of the CN-MOSFET NP dynamic CMOS circuit reduces the dynamic switching power consumption by 80.54%, 95.57%, and 25.66% as compared to the Si-MOSFET domino, Si-MOSFET NP dynamic CMOS, and CN-MOSFET domino circuits, respectively. Furthermore, the CN-MOSFET NP dynamic CMOS adder provides up to 99.98% savings in leakage power consumption as compared to the other adder circuits that are evaluated in this study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems I: Regular Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.