Abstract

A fuel cell, an energy transducer, can convert chemical energy into electrical energy. In this work, graphite felt (GF) loaded with polypyrrole (PPy) and carboxylic carbon nanotubes (CNTs-COOH) was used as a cathode (GF/PPy/CNTs-COOH) in a double-chamber nonbiofuel cell (D-nBFC) to remove Cr(VI) efficiently. Therein, Na2S2O3 in an alkaline solution and Cr(VI) in a strongly acidic solution were employed as anode and cathode solutions, respectively. An agar salt bridge, consisting of saturated KCl solution, was used to transport ions between the anode and cathode. This system suggested that the removal efficiency of Cr(VI) could reach 99.6%. The maximum current, power, and power density could achieve 136.8 μA, 18.7 μW, and 20.8 mW/m2 at 90 min, respectively. Additionally, GF/PPy/CNTs-COOH also had good electrocatalytic stability and reusability after four cycles, which played an important role in the development of the D-nBFC system. Therefore, this study provides an environmentally friendly and efficient method to remove Cr(VI) and generate electricity simultaneously.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call