Abstract

Scalable and economic manufacturing of carbon nanotube (CNT) greases addresses the current challenges of nanofluids. The key problems remain the complex and non-obvious nature of nanotube-base fluid interactions with the diversity of nanotube morphological variants as the main aspect. Here, we prove that successful formation of stable and multifunctional CNT-polyalphaolefin (PAO) greases is possible only by employing two types of multi-wall CNTs (MWCNTs) as the thickening as well as thermo- and electro-active agents, i.e., (1) thin, entangled, less crystalline nanotubes and (2) thick nanotubes connected via few-mismatched-layer graphenoid joints. Using mechanical spectroscopy, SEM, TEM, Raman spectroscopy, inverse gas chromatography (IGC), and Hansen solubility parameters, we analyze the mechanisms governing fast-thickening behavior and CNT-PAO affinities, revealing a reversible formation of a 3D CNT-network which mimics a mesh of the conventional lithium soaps. Finally, we reveal the multifunctionality of the CNT-PAO greases, expressed in as high as 58%- and 700%-enhancements of thermal and alternating current conductivity, respectively, compared to PAO base fluid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call