Abstract

Al matrix composites reinforced with 0–5 vol. % carbon nanotubes (CNTs) were fabricated by spark plasma sintering (SPS) to examine their hydrogen generation properties from the hydrolysis of Al in 10 wt. % NaOH solution at room temperature. The 5 vol. % CNTs/Al composite exhibits a maximum hydrogen generation rate of 120 ml/min g, which is about 6 times higher than that of Al without CNTs due to the synergetic effects of the porous Al matrix, which has a large reaction area and galvanic corrosion between the Al matrix and the CNTs. The hydrogen gas generated from the hydrolysis of the CNTs/Al composite has high purity without any production of undesirable CO. PEMFC produced electricity at 10 A and 0.73 V for 13 min, with hydrogen generated from the hydrolysis of 3.5 g–5 vol. % CNTs/Al composite. The CNTs/Al composite was effectively used as a hydrogen source for PEMFC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call