Abstract

Carbon nanotubes (CNTs) are known to potentiate arterial thrombosis in animal models, which raises serious safety issues concerning environmental or occupational exposure to CNTs and their use in various biomedical applications. We have shown previously that different CNTs, but not fullerene (nC60), induce the aggregation of human blood platelets. To date, however, a mechanism of potentially thrombogenic CNT-induced platelet activation has not been elucidated. Here we show that pristine multiwalled CNTs (MWCNTs) penetrate platelet plasma membrane without any discernible damage but interact with the dense tubular system (DTS) causing depletion of platelet intracellular Ca(2+) stores. This process is accompanied by the clustering of stromal interaction molecule 1 (STIM1) colocalized with Orai1, indicating the activation of store-operated Ca(2+) entry (SOCE). Our findings reveal the molecular mechanism of CNT-induced platelet activation which is critical in the evaluation of the biocompatibility of carbon nanomaterials with blood.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.